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. ~. Alley uDu ~3~.  ~ , 1 4 : ~ 3 5 . 3 1  

I. The ........ u~,dv• of waves on the surface of a viscous conducting fluid in external 
fields is of constant interest (see rl ,i for - , [x-~J uxampxes. However, as a rule, the study is 

limited to uniform fields. In real problems the fields are always nonuniform. 

Here a method is presented for studying the interaction of capillary waves on the 

surface of a viscous conducting fluid with spatially nonuniform surface stresses. Obviously, 
the solution to this pLuu• ...... is uxfx•177 =-'---1 in the g~.er~• ....... case. However, ~m~• .............. are 

possible when the field changes slowly on scales of the order of a capillary wavelength, 
that is, within the limits which by tradition can be called geometrical acoustics or optics. 
T - -  " " - - 1 1 - -  L 1  . . . .  ~ 1 _  --  --1 . J  1 1  1 ~ . _  W i •  L •177 L.u meLuuu wzz• u u  s~nm~arized, and the geometrical acoustics equations --'~ ~ be 
obtained. Then the focusing properties of a large-scale nonuniformity will be studied. 

The condition [~,r' 5] for applying geometrical acoustics and optics is that the wave- 

- - -  "- u n a r a c t e c x s t x c  •  m u s t  be  s m a l l  c o m p a r e d  t o  t h e  . . . . . . . . . . .  d i m e n s i o n s  o f  t h e  p r o b l e m .  I n  t h e  c a s e  
o f  c a p i l l a r y  w a v e s ,  t h i s  i s  i n  c o m p a r i s o n  t o  t h e  s c a l e s  o f  n o n u n i f o r m i t y  o f  t h e  s u r f a c e  
s t r e s s e s  o r  t h e  ezecuL-~ . . . .  aca• " f i e l d .  

2 .  B e f o r e  we exm-nine t h e  g e o m e t r i c a l  a c o u s t i c s  e q u a t i o n s  o f  c a p i l l a r y  w a v e s  i n  a n  
2 - - 1  J - . 3 1 1  ~tz•177 us~fu• v,eL,ud the equations in the electric f•177 we w•177177 study the simpler, but ................. of 

t . . . . . . . .  t l -  �9 t l  - au~e,u~ of a field. In this formulation of the pLuuxum, the surface stress is spatiaz• 
nonuniform. ~radxunum in the surface stress are known tJJr=~ to lead to ......... n~ar-~u~xauu=--- flows - 

the capillary waves propagate namely in the background of these flows. In order to examine 
the possibility of separating the two motions - the steady state flow and the capillary 
waves - we use the linearized Navier-Stokes equation and the contin~ equation 

pOv/Ot = - - V P  @ ~ A v ,  d i v  v = 0,  (2.1) 

where v is the vector velocity, p is the pressure, q is the viscosity, and 9 is the density; 
the boundary conditions on the horizontal surface of the fluid (the xy plane): 

- -p  + 2qOujOz --  ?O~/Ox ~ = 0; ( 2 . 2 )  

q(Ov~/Oz v- OvjOx) = O?/Ox ( 2 " ~  ~ 

for z = 0. Here ~ is the uzs~xauemen~ .......... o• a point on the fluid surface from the equilibri~m-~ 
position; therefore ~ ~ TM o ~ / o t  = V z l z = 0 "  

r n l _  t,e last term in (2 ~ ...... .a/ is the ,,ap• pressure (y is the surface tension coefficient). 
The boundary condition (2.~ 3s considers the tangential component of the forces due to the 
surface nonuniformity. 

We note that Eqs. (2 i ~ ~_ u~ua• .• can uu linearized under the ...... assm-aption that the oscilla- 
tion amplitudes are small compared to the characteristic wavelengths: r << X. 

~ -  _ _ , I  

nu ~•177177 attempt to represent the velocity as the sum v = v 0 + v+, where v0 is the 
steady-state flow velocity and v+ is the fluid velocity related to the wave motion. 

rnl__ 

• equations for the two motions can be separated if the p,abu ...... velocity of the wave is 
much larger than the steady-state flow velocity. In the low-viscosity approximation r t5J, we 
have v+ = ~/k = /~k/9, where ~ and k are the frequency and wave n~aber of the wave. From 
this it is obvious that the inequality v+ >> v0 is fulfilled only for short waves, when 
k >> Ov~/u  
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It should be noted that we did not consider the change in mass (per unit area) related 
to the presence of absorbed molecules. Moreover, the boundary conditions for the equations 
of motion do not consider the excess surface moment~ and conditions related to the differ- 
ence in material density near the surface from the average volume density. This means that 
the thickness of fluid induced into motion can be larger than the surface transition layer, 
which is equivalent to the limitation k6 << i, where 6 is the thickness of the surface layer. 

We restrict ourselves to the limit of anonviscous fluid. (We recall [6] that in geo- 
metrical optics only transparent media are examined.) Then a very simple approach can be 
used to describe the fluid dynamics with the use of a velocity potential ~ (where v = 7~). 
Then (in the limit of an incompressible fluid), the condition 

A T = 0 ( 2 . 4 )  

is fulfilled, and moreover on the fluid surface 

po~lO4~=o - , r  = o ,  (2.5) 

where A n = ai/ax2 + ai/Sy 2, and (x, y) is the system of rectangular coordinates on the 
surface plane of the fluid. The relationship between the displacement from equilibrium and 

the potential ~ is 

a~iOt = O~/Ozl~= . .  ( 2 . 6 )  

In the case ~ = const, substituting the solution ~ = ~0 exp(-iwt + ikx + iKz) yields the dis- 
persion equation for the capillary waves: ~ = ~k/p. 

Having ass~ned, however, that ~(x, y) varies from point to point, we will examine the 
propagation of a wave which satisfies the inequality kL >> I, which coincides to the range of 
application of geometrical optics (L is the characteristic scale for the change in ~). The 
frequency is a constant for a monochromatic wave under stationary conditions; therefore, the 
dependence of ~ and $ on time and the coordinates is expressed in the form 

= ~oexp  ( - - i~t  + i~(x ,  y)), ( 2 . 7 )  

= ~o exp ( - - i~t  -~ ir  g) + k(x, g)z). 

Here the limitation k > 0 must be imposed, because the wave should attenuate into the depth 
of the fluid (z < 0). In analogy to the theory of geometrical optics of electromagnetic 
waves, the quantities @, and ~$ are called the characteristics [eikonals]. As we will see 
later, in the geometrical optics approximation, ~ and ~ coincide with each other (with 
logaritl~ic accuracy), and ~0 and $0 are constant coefficients. 

Before we substitute (2.7) into (2.4), we calculate An~: 

�9 ~ 2 Anq~ = [~'(Vn~g,) ~ iAn~l~ m -]-- 2 i v , , ~ v n k  ~- z i (vnk)  2 -~- zAnk]q~ , 

The characteristic ~ changes by 2~ over a wave- where A n is a two-dimensional gradient. 
length: 8 ~ l a x  ~ 2~/X, which means that from ~ ~ 2~xl~ for capillary waves (X § 0) it 
follows that ~i is a large quantity. Therefore, only the first term is retained in An~. 

Thus, Eq. (2.4) takes the form 

- ( v n % )  2 - t  k ~ = o. ( 2 . 8 )  

After substitution of ~ and r Eq. (2.6) is represented as 

- - ~ o  exp (i~(x,  y)) ~ k(x, Y)~o exp ( i~(x ,  y)). 

By using k0 [the value of k(x, y) at infinity] and by introducing the equality 
k0~0 = -i~$0, we write the relationship between ~i and ~$: n(x, y)'exp(i~i) = exp(i~$), 

where, in analogy to optics, the index of refraction is 

n ~ k ( x ,  y ) l k  o. (2.9) 

By considering that ~ and ~ have large values, it can be concluded that they are equal 
(to an accuracy of In n). Then Eq. (2.5) is represented in the form 
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- ~  + ~(x ,  ~ ) k ( x ,  ~)(V~%) ~ = O. 

By c o m b i n i n g  Eqs .  ( 2 .  ~ o] and (2.9) we obtain 

2 2 (Vn~) 2 k0~ , where ~ = (~0/~ (X, y))l/3 

while 

( 2 . 1 0 )  

k0 = (PeS/?0)~/3, (2 .  •  

and Y0 is the surface tension coefficient at infinity. Equation (2.10) coincides in form to 
the characteristic equation from [6], which determines the propagation of rays in a medi~ 
with an index of refraction n. By using [6], we can write the equati~] for finding the form 

of the rays: 

dl/dl = [vnn  -- l(Ivnn)]/n, 2. I~ • 

- - 1  . . . . .  L l l ~  w . e r ~  ! i s  t h e  u n i t  v e c t o r  t a n g e n t  t o  . . . .  r a y  and  t h e  d e r i v a t i v e  i s  c a l c u l a t e d  ~• . . . . .  t h e  r a y  
t r a j e c t o r y .  

I t  m u s t  be n o t e d  t h a t  i n  u~ueL t o  s e p a r a t e  t h e  d e s c r i p t i o n  o f  t h e  s t e a d y - s t a t e  and  wave 
. . . .  ~ i  _ _ _  -, . . . . .  1 z - ~ . L U . f ~ - . ~  motions, d,uLn~L ~n~qud•177 must be fulfilled ....... the condition v+ >> v- 0. In studying 

the motion of the capillary waves through a nonuniform surface stress, we did not consider 
the effect of the steady-state flow. This is possible if the change in the velocity of the 
capillary wave, which depends on the surface stress, is much larger than the steady-state 
flow velocity, that is, Av+ >> v0. 

From v+ = v ~  we have 

Av+ = (a~/ax)L/2 I / ~ .  
m 1 _  �9 ue velocity v 0 can be estimated from ~r~.3) by asstm~ing that v x ~- v0 changes ma~ed~y . . . . . . . .  over a 
distance on the order of 6, where 5 is the scale of .... L~e region which is enrapped by the 
steady-state motion (for example the layer thickness of the fluid; for a bottomless fluid 
u ~ ~ ] .  T h e r e f o r e  ~ /~ " fu-• that v0 ~ aVx/OZ ~ v0/6, from which it then %s I ] 2 0 3 1 ' /  oX rllla•177 

the desired inequality takes the form 

k >> 4yp(6/qL) 2. 

By using Eqs. (2.10) and (2.12), we solve the problem of geumeu~lua• acoustics for 
uapz•177 waves in the absence of a field. 

3. We now ex~m~ine the consequences of including an electric field. As before, in this 
case it is necessary to separate the ~teauy-~uace .......... regime and the wave propagation. The 
Navier-Stokes equation, the continuity equations, and the boundary condition (2.2) remain as 
u e - o ~ .  I n  a n a l o g y  t o  t h e  p r e v • 1 7 7  p r e s e n t e d  change i n  t h e  b o u n d a r y  c o n d i t i o n  and t h e  i n -  
c l u s i o n  o f  a n o n u n i f o r m  s u r f a c e  t e n s i o n ,  c o n d i t i o n  ( 2 . 3 )  t a k e s  t h e  f o rm  

~](avffaz 4- aG/Ox) = ~E~ 

f o r  t h e  n o n u n i f o r m  f ~ •  . . . . . .  i s  t h e  s u r f a c e  c h a r g e  d e n s i t y .  I n  t h e  s t e a d y - s t a t e  mode ,  
the right side is zero, ueuau~ the conducting surface is an ~qUxput~LZa• surface. However, 

. . . . . . . .  z uuunuary condition it can be for uscz•177 motion, we have E x = E0~%~ax. From the last ....... 
seen that in order to neglect the additional terms ....... to .... uumpa~u the others for c~zs condition, 
the inequality 

q~gx >> k~ 4x02, otherwise m >> 4~ff2/I] 

must be satisfied. By considering the expression for ~, for example in the limit of low 
viscosity, we obtain that the last inequality is fulfilled for short wavelengths: 

k]/(?k--4~=)/p>>4no=/~. 
In this case Eq. (~.o~ is written in the form [6] 

pa(p/at l~=o - vs,~'~ - 4~o~k(x, y)~ = O,  
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where now y is a constant quantity. 

The expressions (2.7), Eq. (~.o~ the ru•177 ............ between ~0 and t0, anu .... the equation 
for n are used for ~ and $. We also retain the conclusion on the equality of the character- 
istics ~ and $~ However, now the condition for the surface changes form: %- 

--pO 2 + [?k(x, y) - -  4:~(~21(V,~,~p = O. (~.~.• 

By combining t~ o 3.1 ~.o) and ( , we -~ have the cubic equation 

%,2(V,~p~)6 _ (4ne2 )~ (V, , ,~ )~  _ 2p(o: (4=(~)Cv~P,)~  _ (pm~)~ = O, 

f o r  ( "  ' '~ ~ ~ - -  ~.n~ Vn~,~ . .nu exact solution to this equation is difficult. However, by using . . . .  
-1 .... ~. . . . .  1- -- I . . . . .  11 ~u•177 be . . . . . . .  -'--~ in powers of the ~,~.~• ~.ur ~-wmvu• approximation, the __ i ~" -- cart ~p~.ueu param-teter 

4~j2~, . . . . . . .  ,___. un~r~ctur• of . . . .  problem, and (Vn~b~)~ ~0, where k0 is the - '  . . . . . . . .  " ~ ' -  wave zz~,u~ u.~ can be 
separated into a convenient form (2.10) and (2.11), where n = (I - 4no~/Tk0)-~/3�9 (In the 
derivation it is assumed that o + 0 at infinity.) Equation (2.12) is used for the ray tra- 

jectory as before. 

In particular, this approach makes it possible to describe the focusing properties of 
�9 -I ~_ 

nonuniform electric flu• in surface hyd~ouynam• ........ r, [~j �9 

ub-a-,~u _,_ . . . .  1 ~ n• the geometry of the rays to be uutetm• as they The equations - . . . . . . .  
pass through the nonuniformity of the surface stress and the electric field. It is necessary 

amp• .~ tu  m~tuou to augment them by the equations for .... unu field _._i ................ for obtaining the 
corresponding equations for the electromagnetic waves is shown in [rn~ .I �9 We . . . .  w•177 use an 

analogous ..... = .... procuuure. We write (2.5) in the form 

-~;,:opq)o e x p  (/.%~) + ( 7 ( V ~ ) ~ o  - -  4~o~k~o)  x 
( ~  .", "t 

X e x p  ( i ~ )  + { - - ~ y ( 2 V ~ o V =  ~ + ~ o A ~ i ) }  • ~ J .  z s  

x e x p  ( i , ~ )  - -  yAhOo e x p  (iapO ---- O, 

w h e r e  w e  g r o u p  t h e  t e r m s  w h i c h  c o r r e s p o n d  t o  t h e  d i m i n u t i o n  o f  t h e  p o w e r  o f  $ f r o m  t w o  t o  
[ . . . . .  11  ~ l __  z e r o  k t e u ~ • 1 7 7  t h a t  ~ i s  a l a r g e  p a r z a a e t e r ) .  E q u a t i n g  u ~ e  f i r s t  t w o  t e r m s  t o  z e r o  d e f i n e s  t h e  

index of refraction of the surface waves with a co,aside ration of the field�9 The last term 

is - _i.__.~ _ g~u,nut ~ •177 . J . . ~  neg•177 small in the limit of ........... acoustics .... equation for computing the 
___I �9 _m~ wave ampxituue is obtained by setting to zero the ...... bracket: 

- ~v (2v~,V4o + L y e , )  = o. (3 .3 )  

[') O A  
�9 mu• c •  autuax-y, __ . ,~_.  i _ As in [7], Eq. ko_.~s can be used to find the defining conservation law . . . . . . .  we 

.... 1 J _ l _ -  ____t �9 __ the e q u a t i o n  b y  F. 0 ,  c o m b i n e  t e r m s ,  mu•177177  t h e  r e s u l t i n g  e q u a t i o n  b y  $ 0 ,  a n d  t h e n  c o , a u l n u  

the two equations to obtain 

V . * V ~ ( ~ o ~ o )  + (~o~o) d i v ~ v n *  = O, ( 3 .  ' '  4 2  

which can be written as 

d i v n j  = 0,  j =- (~o~o)Vr, q .  ~J.-,s"~ =" 

fulf• the continuity equation for the vector j, wn• is ....... Thus, we have _. 1 1 _ J ' ~" -'- propel Lion~ 
�9 gLuwuu wave ay~,p • i- to the energy in the wave�9 As in optics, Eq (3. "\~2 determines the ....... in the .... 

rude during focusing. If we introduce the derivative with respect to the ray direction 
~ I n n  .L r~ _i. oIo~ - WnVnV, then (3.5) takes the form 

20~o/0l + ~oA,,.* = 0 .  

Correspondingly, the product 50~0 satisfies the equation 

a(~o~o)/az + (~o)A, , ,  = o, 

whose solution we write in the form 

( integration is ......... �9 pez• along the ray) The last fo~m of the equation is widely used in 

optics [7]. 
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It was shown above that the energy flux of the wave is conserved. This is related to 

the neglect of the wave attenuation. A weak attenuation can be introduced in Eq. ~.~.~:"" ~x in 
.... 1 . . . . . .  J ~  . -  2 _ . _  al,axugy to hydrodynamics. This fact and the uun~xue~atxun that the u~spe~un . . . . . . . . . .  equation for 

1 . ~  J ~ . . . .  2 t  waves in a low-viscosity fxuxu is uesc~xued by (3 ~ .~: makes it possible to determine the 

total change in amplitude related to ray focusing and wave attenuation. 
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,ne Lnerma• ~ .... xn~tau-x-ty of the layer of a liquid with a free surface has ueeu 
_ ~ _  + n a - L ) ~ r d . I L  mLUui~d, Oii which a surface-active agent has ......... [I ~ .......... app• ~j. lue p[ou• of the initia- 
tion of thermal-capillary convection in the presence of a surface-active agent has been 
solved r ~ , xuLmui~t:un consideration of the hydrodynamic and L J, ~J in the two-layer . . . . . . . . . . . . .  with a 

thermal processes on both sides of the separation ~uL• In a•177 cases, the problem was 
_ _z~  _ J  --1 . . . . . .  J . . . . .  examxneu under the assumption of a p-anu unu~foLrneu interface. It is known that interface 

deformation can have a ~• effect on the excitation of uhermal-uapix• convection 
[5-7]. 

Here, the instability of the uqu• of systems containing surface-active agents is 

z.ve~uigaueu with a consideration of the deformation of the interface. The effect of the 
surface-active agent is studied on the monotonic instability ,uoue, and also on osu~•177 ~ ~- - 
modes of various types. Features are explained for exciting a special type of oscillatory 

W 1 1 - t C l l  -,,staulxz-y, is closely ,'elated to the presence of a ~urxaue-actxve agent when the 
interface is deformed. 

-I_-._- I. Let the space between two horizontal solid plates at y = at and y = --a~, over w,xuh 
a temperature difference 8 is maxnuaxnuu, . . . . . . . . . . .  be fxlxuu: ~ - = wit]] two layers of in6niscible viscous 
fluids. The equation of tl]e interface is y = 0 in the state of mechanical equilibriLm~. The 

densities of the media are Pro, the coefficients of dynamic and kinematic viscosity are qm 
tnerma• -- ~ a n d  Vm,  t h e  . . . . .  c o n d u c t i v i t i e s  a r e  •  a . u  t h e  ] ] e a t  t r a n s f e r  c o e f f i c i e n t s  a r e  X m  ("~ = t 

for the upper layer and m = 2 for the lower one). We ass*role that a surface-active agent is 
cunc~1,tLmueu with a surface : .... <~,,a~] concentration F at the interface, m~__ concentration of 
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