GEOMETRICAL ACOUSTICS APPROXIMATION FOR SURFACE WAVES
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where v is the vector velocity, p is the pressure, n is the viscosity, and p is the density;
the boundary conditions on the horizontal surface of the fluid {(the xy plane):
—p + 200v,/0z — v3%E/9x* = 0; (2.2)
f2 3\
N(0v,/dz + 0v,/0z) = dy/dx M

for z = 0. Here £ is the displacement of a point on the fluid surface from the equilibrium
position; therefore 85/8t = vy |z=.

The last term in (2.2) is the Laplace pressure (v is the surface teansion coefficient).
The boundary condition {2.3) considers the tangential component of the forces due to the

The eguations ions can be separated if the phase velocity of the wave is
much larger than the steady-state flow velocity. In the low-viscosity approximation [5], we
have vy = w/k = vVyk/p, where w and k are the frequency and wave number of the wave. From
this it is obvious that the inequality vy >> v, is fulfilled only for short waves, when
k >> pvi/y.
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It should be noted that we did not consider the change in mass (per unit area) related
to the presence of absorbed molecules. Moreover, the boundary conditions for the equations
of motion do not consider the excess surface momentum and conditions related to the differ-
ence in material density near the surface from the average volume density. This means that
the thickness of fluid induced into motion can be larger than the surface transition layer,
which is equivalent to the limitation k& << 1, where § is the thickness of the surface layer.

We restrict ourselves to the limit of a nonviscous fluid. (We recall [6] that in geo-
metrical optics only transparent media are examined.) Then a very simple approach can be
used to describe the fluid dynamics with the use of a velocity potential ¢ (where v = V¢).
Then (in the limit of an incompressible fluid), the condition

Ap =0 (2.4)
is fulfilled, and moreover on the fluid surface
pd@/0t),—y — vAE =0, (2.5)

where A, = 82/8x% + 32/3y?, and (x, y) is the system of rectangular coordinates on the
surface plane of the fluid. The relationship between the displacement from equilibrium and
the potential ¢ is

at/ot = 8@/oz],—,. (2.6)

In the case y = const, substituting the solution @ = @, exp(—iwt + ikx + iKz) yields the dis-
persion equation for the capillary waves: w? = yk/p.

Having assumed, however, that y(x, y) varies from point to point, we will examine the
propagation of a wave which satisfies the inequality kL >> 1, which coincides to the range of
application of geometrical optics (L is the characteristic scale for the change in y). The
frequency is a constant for a monochromatic wave under stationary conditions; therefore, the
dependence of @ and £ on time and the coordinates is expressed in the form

E = EO exp (—l(l)t + “l:‘é(x, y))1
Q¢ = (py eXp ("l(l)t -+ iﬂ?w(zw y) + k(xv y)Z).
Here the limitation k > 0 must be imposed, because the wave should attenuate into the depth
of the fluid (z < 0). In analogy to the theory of geometrical optics of electromagnetic
waves, the quantities g and yp are called the characteristics [eikonals]. As we will see
later, in the geometrical optics approximation, Y, and 123 coincide with each other (with
logarithmic accuracy), and ¢, and £, are constant coefficients.

Before we substitute (2.7) into (2.4), we calculate An@:

Anq) = [iZ(V an})z }— iAanp +’ 2LV 1:¢¢V nk ‘f‘ 22(V nk)?' ‘%’ ZAnk](p N

where A, is a two-dimensional gradient. The characteristic y, changes by 2m over a wave-
length: 8Yg/dx ~ 2m/A, which means that from ygq ™ 2nz/A for capillary waves (i - 0) it
follows that ye is a large quantity. Therefore, only the first term is retained in Ap@.
Thus, Eq. (2.4) takes the form

—(anPch +- k* = 0. (2.8)
After substitution of ¢ and &, Eq. {(2.6) is represented as
—iwk, exp (W(z, ¥)) = Kz, ¥)Po exp (ie(z, ¥))-

By using k, [the value of k(x, y) at infinity] and by introducing the equality
kopo = —iwE,, we write the relationship between vy and $g: n(x, y)-exp(ivy) = exp(ivg),

where, in analogy to optics, the index of refraction is
n = k(z, y)lk,. (2.9)

By considering that ¢, and yg have large values, it can be concluded that they are equal
(to an accuracy of 1n n). Then Eq. (2.5) is represented in the form
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—p0? + (2, Yz, Y)VPe)® =0

By b1n11 Eqs. (2.8) and (2.9) we obtain
2 L.2,2 1/3
(Vipg)?* = kgn?, where n = (vo/y (2, y))'°, (2.10)
while
—_— 2 1/3
ky = (p@®/yo) s (2.11)
and y, is the surface tension coefficient at infinity. Equation (2.10) coincides in form to
the characteristic equation from [6], which determines the propagation of rays in a medium
with an index of refraction n. By using [6], we can write the equation for finding the form
of the rays:
dl/dl = [y.n — Illy,n)l/n, (2.12)
where 1 is the unit vector tangent to the ray and the derivative is calculated along the ray

It must be noted that in order to separate the description of the steady-state and wave
motions, another inequality must be fulfilled besides the condition vy >> vy. In studying
the motion of the capillary waves through a nonuniform surface stress, we did not consider
the effect of the steady-state flow. This is possible if the change in the velocity of the
capillary wave, which depends on the surface stress, is much ldxg r than the steady-state
flow velocity, that is, Avy >> vy.

From vy = v¥yk/p we have

= (9y/az)LI2V klpy.
The velocity v, can be estimated from {2.3) by assuming that vy ~ v, changes markedly over a
distance on the order of §, where & is the scale of the region which is enrapped by the
steady-state motion (for example the layer thickness of the fluid; for a bottomless fluid
§ ~ L). Therefore 8vy/dz ~ v,/§, from which it then follows that v, ~ (6/n)éy/6x. Finally,
the desired inequality takes the form

k> 4yp(6MmL)®.

By using Egs. (2.10) and (2.12), we solve the problem of geometrical acoustics for
capillary waves in the absence of a field.

3. We now examine the consequences of including an electric field. As before, in this
case it is necessary to separate the steady-state regime and the wave propagation. The
Navier—Stokes equation, the continuity equations, and the boundary condition {(2.2) remain as
before. In analogy to the previously presented change in the boundary condition and the in-
clusion of a nonuniform surface tension, condition (2.3) takes the form

teady-state mode,

urface. However,
a on it can be

hat in UrdEL to neglect the add 1is condition,

Nk, > kE4no?, otherwise o 3> 4no?/m

must be satisfied. By considering the expression for w, for example in the limit of low
viscosity, we obtain that the last inequality is fulfilled for short wavelengths:
EV Ok — 4nod)lp > 4no?hy.

In this case Eq. (2.5) is written in the form [6]

POQ/0t),—p — YALE — bdno?k(z, y)§ =
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(3.1)

By combining (2.8) and {3.1), we have the cubic equation
6 2)\2 4 __ 2 2 2 02
VAV o) — (4o (Y ate)* — 2p0*(4n0?)(Vihg)® — (p0?)? =0

for (V,¢,)?. The exact solution to this equation is difficult. However, by using the
short-wavelength approximation, the solution can be expanded in powers of the small parameter
=21 1 IS T s TP T U SR IRE S g _ . -
4162 /vk,, where k, is the characteristic wave number of the problem, and (V—-I‘Pw)z can be
separated into a convenient form (2.10) and (2.11), where n = (1 — 4wo2/yky)"2/%. (In the
derivation it is assumed that o > 0 at infinity.) Equation (2.12) is used for the ray tra-

1 parti this approach makes it possible to he focusing properties of
nonuniform electric fields in surface hydrodynamics [4].

The equations obtained above allow the geometry of the rays to be determined as they
pass through the nonuniformity of the surface stress and the electric field. It is necessary
to augment them by the equations for the field amplitude. The method for obtaining the
corresponding equations for the electromagnetic waves is shown in {7]. We will use an
analogous procedure. We write {2.5) in the form

—i0p@, exp (i) + (V(VaPe)®Ee — 4n6kEy) X
. . 1 2\
X exp (ir) + {—iv(@v A&V + EolAate)} X \o.2)
X exp (ipg) — 74,8 exp (i) = 0,
where we group the terms which correspond to the diminution of the power of ¢ from two to
zero (recall that ¢ is a large parameter). Equating the first two terms to zero defines the
index of refraction of the surface waves with a consideration of the field. The last term
is negligibly small in the limit of geometrical acoustics. The equation for computing the
wave amplitude is obtained by setting to zero the second bracket:
— iy (2VapVaty + EVap) =0 (3.3)
¥ nPVnSy oValp) = . (3.3)
As in {71, Eq. (3.3) can be used to find the defining conservation law. Actually, we multiply
the equation by £y, combine terms, multiply the resulting equation by &4, and then combine
the two equations to obtain
VWV n(EeBo) -+ (Bofo) divayap = 0, (3.4)
which can be written as
divej = 0, j = (EeBolV n¥b- {(3.5)
continuity equation for the vector j, which is proportional
ics, Eq. (3.4) determines the growth in the wave ampli-
e the derivative with respect to the ray direction

208,/01 + EAp = 0.

Correspondingly, the product £¢&q satisfies the equatior

(B 01 + (Eof)Antp == 0,
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It was shown above that the energy flux of the wave is conserved. This is related to
the neglect of the wave attenuation. A weak attenuation can be introduced in Eq. {(3.2) in
analogy to hydrodynamics. This fact and the consideration that the dispersion equation for
waves in a low-viscosity fluid is described by {(3.3) makes it possible to determine the
total change in amplitude related to ray focusing and wave attenuation.
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The thermal-capillary instability of the layer of a liquid with a free surface has been
studied, on which a surface-active agent has been applied [1, 2]. The problem of the initia-
tion of thermal-capillary convection in the presence of a surface-active agent has been
solved (3, 4] in the two-layer formulation with a consideration of the hydrodynamic and
thermal processes on both sides of the separation surface. In all cases, the problem was
examined under the assumption of a plane undeformed interface. It is known that interface
deformation can have a significant effect on the excitation of thermal-capillary convection
[5-71.
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